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In early stages of their development, starving myxobacteria organize their motion to produce a periodic
pattern of traveling cell density waves. These waves arise from coordination of individual cell reversals by
contact signaling when they collide. Unlike waves generated by reaction-diffusion instabilities, which annihi-
late on collision, myxobacteria waves appear to pass through one another unaffected. Here we analyze a
mathematical model of these waves developed earlier[Igoshinet al., Proc. Natl. Acad. Sci. USA98, 14 913
(2001)]. The mechanisms which generate and maintain the density waves are clearly revealed by tracing the
reversal loci of individual cells. An evolution equation of reversal point density is derived in the weak-
signaling limit. Linear stability analysis determines parameters favorable for the development of the waves.
Numerical solutions demonstrate the stability of the fully developed nonlinear waves.
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I. INTRODUCTION

Waves and wavelike phenomena are everywhere in nature
but their underlying mechanisms are very diverse. Well-
studied examples include inertial waves in fluid mechanics
and elasticity and Turing instability waves in excitable
chemical media. The latter mechanism has been used to
model a variety of biophysical phenomena such as calcium
waves in vertebrate eggs[1], progression of epidemic fronts
[2], chemotactic waves of the slime moldDictyostelium dis-
coideum[3–6], and pigmentation patterns on sea shells[7,8]
and other animals[9,10] (see also[2] and references therein).
The Turing mechanism depends crucially on diffusion and so
these patterns are referred to as diffusion-reaction patterns.
In contrast, the density waves observed during the develop-
ment ofMyxococcus xanthusarise in a completely different
way.

Myxobacteria are rod-shaped bacteria, well known for
their social lifestyle and complex developmental patterns
[11–18]. Under starvation conditions cells aggregate into
multicellular mounds called fruiting bodies. Just before the
aggregation begins the surface of the colony is often covered
with well-organized periodic patterns of equispaced high-
cell-density bands that move as traveling waves, often re-
ferred to as “ripples”(Fig. 1) [14,15,18]. In certain circum-
stances the waves can persist for hours with no net mass
transport[14], analogous to water waves. The wave crests
appear to pass through one another with no interference
[14]. Actually, the waves do not interpenetrate, but reflect off

one another when they collide. We have come to refer to
them as “accordion waves,” and they are quite unlike the
chemotactic waves inDictyostelium discoideum[3–6] or
chemical waves[2,19] that annihilate on collision.Dictyos-
telium waves are based on induced release of an attractant,
cAMP, by each cell to which they respond by moving up the
local cAMP gradient. The pattern formation mechanism in
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FIG. 1. Ripples as seen in phase contrast microscopy.(a) Coex-
isting planar, spiral, and concentric waves(courtesy of Brian Sager
and Dale Kaiser). (b) Planar waves at the edge of submerged culture
(courtesy of Roy Welch and Dale Kaiser).
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myxobacteria is different because they communicate only by
direct cell contact[20,21].

II. MATHEMATICAL MODEL

The mathematical model describing the ripple phase was
presented in Ref.[22] based on experimental observations
summarized in Refs.[14,15]. The essential ingredients of the
model are as follows.

(i) Each myxobacterium glides along its long axis. It pe-
riodically reverses its gliding direction not by making a U
turn, but by switching its “front” and “rear” ends. An internal
biochemical cycle controls the reversals in direction.

(ii ) Cells collide with oppositely moving cells. During
each “head-to-head” collision cells exchange a contact signal
which accelerates their reversal cycle. The collision
frequency—and therefore the signaling intensity—is propor-
tional to the local cell density.

(iii ) After each reversal the cell enters a “refractory pe-
riod” during which it does not respond to collision signaling
and does not reverse.

In many experimentally observed situations rippling is es-
sentially a one-dimensional phenomenon since cells are pre-
dominantly aligned in parallel. For instance, in Ref.[15]
cells glide parallel to an impermeable boundary of a sub-
merged culture[Fig. 1(b)]. In different conditions[Fig. 1(a)]
myxobacteria generate complex patterns of interpenetrating
planar, spiral, and concentric waves[14]. These wave pat-
terns can be reproduced by the mathematical model summa-
rized above if the cell orientation dynamics is taken into
account[23]. In this paper we will restrict ourselves to one-
dimensional ripple patterns by assuming that cells only move
parallel to thex axis.

In order to represent the internal biochemical cycle math-
ematically we map it onto the circle as shown in Fig. 2(a)
and describe it by a phase coordinatef. Cells with 0,f,p
move to the right(+x direction), and cells withp,f,2p
move to the lefts−xd. Therefore, a population of cells can be
characterized by the density functionnsx,f ,td giving the
number of cells in a neighborhood of pointx with phasef at
time t. Since cell division and death are negligible on the
time scale of rippling, the density obeys the conservation
equations

]tn + v0]xn + Dx]xxn + ]fsv+nd + Df]ffn = 0 in 0, f , p,

s1d

]tn − v0]xn + Dx]xxn + ]fsv−nd + Df]ffn

= 0 in p , f , 2p. s2d

Here v0=const is the spatial velocity of individual cells;
v+sx,f ,td and v−sx,f ,td are the angular(phase) velocities
describing how fast cells at a given position and phase
progress through their reversal cycle. The diffusion terms in
Eqs. (1) and (2) model random fluctuations in space and
phase velocities.

Right after reversals, in phase intervals 0,f,a and
p,f,p+a the cells do not respond to signaling and
progress with constant angular speedv0 [Fig. 2(a)] :

v+sx,0 , f , a,td = v−sx,p , f , p + a,td = v0.

In the sensitive intervals of their cycles(a,f,p, p
+a,f,2p), the cell phase velocity is determined by the
number of collisions(signaling events) they receive. We
shall assume that most of the collisions occur between oppo-
sitely moving cells with a rate proportional to the local cell
density. Therefore,

v+sx,a , f , p,td = v„N−sx,td…,

v−sx,p + a , f , 2p,td = v„N+sx,td…,

where

N+sx,td =E
0

p

nsx,f,tddf, N−sx,td =E
p

2p

nsx,f,tddf

s3d

are the local densities of right and left going cells at a given
point x, regardless of phase. The functionv determines den-
sity dependence of signaling. We chosev to be a generic
saturating sigmoid function[22]

FIG. 2. (a) Mapping of the internal biochemical cycle on a
circle. (b) Typical cell trajectories on thesx,fd plane. Arrows show
the direction of increasing time.
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vsNd = v0 + v1
Nq

Nq + Ncr
q . s4d

Herevs0d can be chosen to be equal to the phase velocity in
the refractory period.1

One can track paths of individual cells in thesx,fd plane.
Figure 2(b) represents typical trajectories of a cell in the
absence of diffusion. In the first refractory phase interval
s0,ad a cell moves at constant speed +v0 in the x direction
and constant speedv0 in the f direction, and so the cell
trajectory is represented by a straight line. As a cell enters its
first sensitive period it continues to glide with speed +v0 in
the x direction but speeds up inf depending on the local
density of counterpropagating cells according to Eq.(4).
Hence, the cell’s trajectory curves downward in this interval.
At phasef=p, the cell reverses its spatial direction. The
spatial and phase velocities in the second refractory interval
p,f,p+a are −v0 and v0, respectively. In the second
sensitive interval the cell accelerates in thef direction and
its trajectory curves upward. When the cell reachesf=2p, it
continues, starting withf=0 and the samex.

Numerical solutions of the model equations show that,
over a certain range of parameters, spatially homogeneous
solutions are unstable[22]. Depending on the boundary con-
ditions it is possible to produce either unidirectional or coun-
terpropagating waves as steady-state solutions[22,23]. Semi-
quantitative arguments show that the wavelengthl is given
by [22]

l < 2v0tR, s5d

wheretR is the average time between reversals.
The outline of the subsequent parts of the paper is as

follows. In the next section we show that the mechanisms
which generate and maintain the density waves are clearly
revealed by tracing the reversal points of individual cells. An
evolution equation of reversal point density is derived in the
weak-signaling limit. In the body of the paper we present a
geometric derivation of the evolution equation. A more for-
mal derivation based on asymptotic expansions is presented
in the Appendix. Section IV analyzes unidirectional-wave
solutions with speed nearv0. The linear stability analysis of
the evolution equation determines the range of model param-
eters for the growth of waves with wavelength given by Eq.
(5) and with speed nearv0. A more general linear instability
analysis is performed in Sec. V. The results of this section
indicate that the linear stability analysis of the weak-
signaling model does not provide a wave speed and wave-
length selection mechanism. Numerical simulations and
analysis performed in Sec. VI demonstrate the stability and
focusing mechanism of the fully developed nonlinear waves.

III. REVERSAL-POINT DENSITY

Before we proceed with the analysis it is convenient to
nondimensionalize Eqs.(1) and (2) so that

v0 = 1, v0 = 1, Ncr = 1. s6d

Therefore, we measure time in units of 1/v0 and length in
units of v0/v0.

A. Kinematic waves

We begin by analyzing solutions of Eqs.(1) and(2) in the
absence of signaling[v1=0 in Eq. (4)] and diffusion sDf

=Dx=0d. In this case Eqs.(1) and (2) reduce to

]tn + ]xn + ]fn = 0, in 0, f , p, s7d

]tn − ]xn + ]fn = 0, in p , f , 2p, s8d

with n continuous acrossf=p and f=0s2pd. The general
solution of this boundary value problem is

n = H fsx − f,t − fd, 0 , f , p,

fsx + f − 2p,t − fd, p , f , 2p,
s9d

where f is an arbitrary function, 2p periodic in its second
argument:

fsx,td = fsx,t − 2pd. s10d

This property follows from continuity acrossf=0s2pd.
The function fsx,td has a clear physical interpretation.

Consider the density of cells at pointx that reverse from left
to right betweent−dt and t [see Fig. 3(a)]. These cells have
phases 0øfødt, so their density isnsx,0 ,tddt= fsx,tddt.
Therefore,fsx,td represents the density of left-to-right(LR)
reversal points in spacetime. By analogy, the density of right-

1Let f be an assignment of phase so that the refractory phase
velocity is ḟ=w0 for 0,f,a. Define a new phasec, related tof
by a “gauge transformation”csfd. Then the angular velocity with

respect toc in the refractory period isv=ċ=c8sfdv0. We can
always enforcev=vs0d in 0,c,csad by choosing c8sfd
=vs0d /v0.

FIG. 3. (a) Reversal points in the intervalst−dt,td: cells that
reverse from left to right in the time intervalst−dt,td would have
phasess0,dtd at time t. (b) Example of a kinematic right-traveling
wave solution.(c) Space-time trajectories of cells in the kinematic
right-traveling wave.(d) The same as in(c) but perturbed by weak
signaling. Cells entering the crest reverse faster and are focused:
i.e., the cell density increased with each reversal.
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to-left (RL) reversal points is given byfsx−p ,t−pd. Thus,
in the absence of signaling and diffusion, Eqs.(7) and (8)
allow us to recover the space-phase density distribution from
the space-time density of reversal points. In addition, the
spatial densities of right- and left-moving particles are given
by

N+sx,td =E
0

p

fsx − f,t − fddf, s11d

N−sx,td =E
p

2p

fsx + f − 2p,t − fddf. s12d

It is easy to show that, in the absence of signaling, Eqs.(7)
and(8) admit kinematic traveling-wave solutions with speed
±1. Traveling waves of velocity +1 are obtained by taking
fsx,td=Fst−xd. It follows from Eq.(10) that F has to be 2p
periodic. From Eq.(11) one concludes that

N+sx,td = pFst − xd. s13d

From Eq.(12) it follows that

N−sx,td =E
p

2p

Fs2sp − t − 2fd − xddf

=
1

2
E

0

2p

Fst + s− xdds= kN+l. s14d

SinceFsxd is 2p periodic, N−sx,td is constant. The second
equality shows that this constant is in fact the average value
of N+sx,td [Eq. (11)] over one period. Suppose that initially
N+ is a 2p-periodic sequence of narrow pulses andN− is a
constant equal to the average value ofkN+l [Fig. 3(b)]. The
corresponding space-time trajectories of particles are shown
in Fig. 3(b). Each of the particles travels in “zigzag” fashion
on the sx,td plane. The time duration between reversals is
equal top, the distance traveled between two consecutive
reversals is alsop, and the net displacement after two rever-
sals is zero.

We now examine how signaling(even if very weak) per-
turbs this simple kinematics to induce focusing of the bands
in Fig. 3(c) which counteracts diffusion. Figure 3(d) illus-
trates the focusing effect. As the left-going cells enter a band
of right-going cells(i.e., a wave crest) they receive sufficient
signals to reverse earlier than they otherwise would have.
Consequently, the reversal points of these cells will drift
closer together, sharpening the crest. This focusing effect
will be counteracted by spreading due to fluctuations in
speed and phase velocity, which we model as diffusion. In
the following subsections we derive an equation describing
how the evolution of the reversal point density is influenced
by these effects.

B. Small-signaling limit

Figure 4 illustrates how signaling perturbs the mapping
from one reversal point to the next. Ifsx,td is a LR reversal
point of a cell, thensx,t+2pd is its next LR reversal point in
the absence of signaling. In the presence of signaling this

reversal point is perturbed by the vectorsdx,dtd. Knowing
the timest+ and t− that a cell travels to the right and left the
components of the perturbation vector are[recalling Eq.(6)]

dx = t+ − t−, dt = t+ + t− − 2p. s15d

Assuming that the densitiesN± are given along the cell’s
trajectory, one can computev± and obtain implicit equations
for t±. For instance, the phase shift between LR reversal at
sx,td and RL reversal atsx+ t+,t+ t+d is given by

p =E
0

t+

v+sx + s,s,t + sdds. s16d

In the same fashion one obtains the opposite reversal phase
shift by

p =E
0

t−

v−sx − s+ t+,p + s,t + sdds. s17d

Now consider the weak-signaling limit defined by

vsNd ; 1 + eVsNd, s18d

wheree.0 is a small gauge parameter. In this case Eqs.(16)
and (17) can be solved iteratively fort±. Substituting results
into Eq. (15) one obtains

dx = eUsx,td + Ose2d, s19d

where

U ; E
a

p

fV„N+sx + p − s,t + p + sd… − V„N−sx + s,t + sd…gds

s20d

and

dt = eVsx,td + Ose2d, s21d

where

V ; −E
a

p

fVsN+sx + p − s,t + p + sdd

+ VsN−sx + s,t + sddgds. s22d

Note that in order to obtain the leadingOsed terms in the
expansion forU andV one can use expressions forN± in the
no-signaling limit—i.e., Eqs.(11) and (12). Consequently,

FIG. 4. Perturbations in a single-cell trajectory by a small
signaling.
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U , E
a

p

dsFVSE
0

p

fsx − s+ f,t + s+ fddfD
− VSE

0

p

fsx + s− f,t + s+ fddfDG s23d

and

V , −E
a

p

dsFVSE
0

p

fsx − s+ f,t + s+ fddfD
+ VSE

0

p

fsx + s− f,t + s+ fddfDG . s24d

These results enable us to construct a mapping of the
reversal-point distribution: Suppose one is given the
reversal-point density distributionfsx,td for all x and 0
ø t,2p. We can construct the mapping of this reversal-
point distribution to the next time slice 2pø t,4p. The re-
versal point densitiesfsx,td and fsx+dx,t+2p+dtd are re-
lated by the Jacobian describing changes in the space-time
unit area:

fsx,td = fsx + dx,t + 2p + dtdU1 + ]xsdxd ]xsdtd
]tsdxd 1 + ]tsdtd

U .

s25d

Substituting Eqs.(19), (21), (23), and(24) into Eq. (25) and
expandingf in a Taylor series, one obtains

fsx,t + 2pd − fsx,td + eh]xsUfd + ]tsVfdj = Ose2d. s26d

Note that in order to determineU andV from Eqs.(23) and
(24) one has to use values off from 0 to 4p—i.e., from both
time slices. Therefore, the mapping(26) looks implicit.
However, sinceU and V appear only inOsed perturbation
terms, one can use a periodic extension off into the
2p,f,4p time slice to make this mapping explicit.
Defining

fnsx,td = fsx,t + 2pnd, 0 ø t , 2p, s27d

one can generalize Eq.(26) as

fn+1sx,td − fnsx,td + eh]xsUnfnd + ]tsVnfndj = Ose2d.

s28d

The subindexn on U andV implies that they are evaluated
using fn and its periodic extension.

In the limit of small e but large n=Os1/ed one can
asymptotically rewrite this iteration mapping as a partial dif-
ferential equation(PDE) for fsx,t ,T;end:

]Tf + ]xsUfd + ]tsVfd = 0. s29d

C. Effects of fluctuations on the phase velocity and speed

Fluctuations in the spatial and phase velocities of indi-
vidual cells are inevitable. We model them by adding inde-
pendent random termsrxstd andrfstd to the spatial and phase
velocities, respectively:

df

dt
= v± + rfstd,

dx

dt
= 1 + rxstd. s30d

If one assumes “white noise” specta for the fluctuationsrf

and rx,

krfl = krxl = 0, krfstdrfs0dl = Dfdstd, s31d

krxstdrxs0dl = Dxdstd,

then the noise terms manifest themselves as diffusion terms
in Eqs.(1) and(2) for densities. In this subsection we derive
how diffusion affects the evolution of the reversal-point den-
sity f. In general, for steady wave solutions to exist the dif-
fusion terms must have the same scaling as the signaling—
i.e.,

Dx ; eD1, Df ; eD2. s32d

The effects of diffusion and signaling can be shown to be
additive to leading order ine. We will assume this additivity
and derive the evolution of the reversal-point density with
noise but zero signaling.

Integrating the phase equation(30) one obtains equations
for t+, the duration of the right-going interval

p = t+ +E
0

t+

rfssdds.

Using Eq.(31) and (32) one obtains

kt+l = p, kst+ − pd2l = 2peD2. s33d

The same formulas hold fort−, the duration of the left-going
interval. The time drift of the reversal points is given by

dt = t+ + t− − 2p = st+ − pd + st− − pd.

Thus,

ksdtd2l = 4peD2. s34d

In the same fashion we obtain that

dx = st+ − pd − st− − pd +E
0

t++t−

rxssdds,

ksdxd2l = 4peD2 + 4peD1. s35d

Therefore, noise terms result in diffusion in the reversal-
point density equation with diffusion constant 2pD2 in t and
2psD1+D2d in x. The resulting equation forfsx,t ,Td is

]Tf + ]xsUfd + ]tsVfd = 2psD1 + D2d]xxf + 2pD2]tt f .

s36d

In the Appendix we show an alternative way of deriving this
equation based on multiple-scale asymptotic analysis.

In some range of parameters the focusing effects of the
convective terms in Eq.(36) would dominate the diffusion
terms so that the homogeneous solution becomes unstable.
The easiest way to illustrate this is to consider unidirectional
traveling waves.
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IV. UNIDIRECTIONAL WAVES OF SPEED 1

We have shown that, in the absence of signaling and dif-
fusion, there are kinematic waves of speed 1. In the presence
of weak signaling and small diffusion, Eq.(36) allows finite-
stationary-amplitude traveling-wave solutions with speed
near 1. We search for solutions of Eq.(36) of the form

fsx,t,Td = Fsj,Td, j ; x − t. s37d

It follows from Eq. (10) that F has to be 2p periodic. In
dimensional units this period corresponds to the wavelength
l=2v0tR in Eq. (5). Fsj ,Td obeys

]TF + 2]jsWFd = 2psD1 + 2D2d]jjF, s38d

where

Wsjd = U − V

= 2E
a

p

V„pFsj − 2s,Td…ds

=E
2a

2p

V„pFsj − c,Td…dc. s39d

The last equality allows one to see that, if there is no refrac-
tory periodsa=0d, then becauseF is periodic, the velocityW
does not depend onj and so provides a constant drift rather
than focusing. It is convenient to separate out this drift by
rewriting Eq.(39) in the form

Wsjd =E
0

2p

VspFsj − c,Tdddc −E
0

2a

VspFsj − c,Tdddc

; W0 + W1sjd. s40d

Figure 5 shows typical solution of Eq.(38) and the corre-
sponding drift velocity. As one can see from Fig. 5 and from
Eq. (40), W1 is always negative and its minimum is shifted to
the right of maximum ofF by 2a. Hence, cells at the front of
the wave crest tend to drift toward the cells in the back of the

crest—i.e., keeping the waves focused. This focusing bal-
ances diffusive spreading of the crest to create the finite-
amplitude steady waves(Fig. 5).

Numerical simulations of Eq.(38) show that the wave
amplitude decreases with increasing diffusion or decreasing
signal strength. At some point spatially homogeneous solu-
tions become stable solutions. To obtain an estimate of this
threshold we perform a linear instability analysis of Eq.(38)
about the homogeneous solution

pFsj,Td = N + Gsj,Td. s41d

The linearized equation forGsj ,Td is

]TG + 2Ws0d]jG + 2N]jW
s1d = 2psD1 + 2D2d]jjG, s42d

where

Ws0d = 2VsNdsp − ad,

]jW
s1d = ]jE

2a

2p

V8sNdGsj − cddc

= V8sNdfGsj − 2ad − Gsjdg.

Equation(42) has exponential solutions of the form

Gsj,Td ~ expssT + ikjd, s43d

wherek=1,2. . .;i.e., k is an integer to ensure 2p periodicity
of solutions. Using Eq.(43) in Eq. (42) we obtain

s = − 4iVsNdsp − ad − 2NV8sNdse−2iak − 1d + 2psD1

+ 2D2dk2. s44d

The growth rateG is given by

G ; Ressd = 2NV8sNdfsin2sakd − Ck2g, s45d

where the competition of diffusion and focusing is expressed
by a parameter

C ; psD1 + 2D2d/fNV8sNdg = ps2Df + Dxd/fNv8sNdg.

s46d

In the last last equality we expressedC in terms of the un-
scaled phase velocity and diffusion using Eqs.(18) and(32).

Figure 6 shows the neutral stability curves defined byG
=0 for different wave numbersk. From Eq.(45) it follows
that a given wave number will grow for parameter values
below the corresponding curve. It is evident that the growth
region for each wave number would include growth regions
of all larger wave numbers as a subset. The shaded region of
Fig. 6 depicts the region where only thek=1 wave grows.
This wave number corresponds to the wavelengthl=2v0tR
[Eq. (5)]. Higher wave numbers correspond to smaller wave-
lengths. In the area above the solid line in Fig. 6 the growth
rate is always negativeG,0 so that the homogeneous state
is stable. Thus unidirectional waves with speed near 1 grow
if

ps2Df + Dxd , fNv8sNdgsin2a. s47d

This criterion is similar to the one developed in Ref.[22] by
semiquantitative arguments. Equation(47) refines that analy-

FIG. 5. SolutionFsj ,Td of Eq. (38) for largeT, left axis, solid
line, and corresponding focusing velocityW1 [see Eq.(40)], right
axis, dashed line. The parameters used are as follows:D1+2D2

=0.1, VsNd=N4/ s1+N4d, anda=0.15p.
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sis in several important ways. It shows how space and phase
diffusion contribute differently to the spreading of the waves
[left-hand side of Eq.(47)]. It also shows how the focusing
effects[right-hand side of Eq.(47)] depend on the duration
of the refractory perioda which was just assumed to be big
enough in Ref.[22]. With the density dependence ofvsNd
given by Eq.(4) the term in the square brackets in Eq.(47) is
maximum atN=Ncr and is proportional to the cooperativity
of the signalingq. This agrees with the numerical results of
Ref. [22].

If the refractory perioda is sufficiently small, Fig. 6
shows that the interval ofC corresponding to growth ofk
=1 waves only is also small. Simulation of the full set of
equations(1)–(4) shows that, at sufficiently strong signaling,
the right wavelength is selected even when the refractory
period is very small sa,p /20d. Therefore, the weak-
signaling approximation developed in this paper cannot de-
scribe a wavelength selection mechanism. This becomes
even more evident as we investigate stability analysis of Eq.
(36) without any assumptions on the wave speed.

V. STABILITY ANALYSIS OF THE WAVE SOLUTIONS

The reversal-point density PDE has a homogeneous solu-
tion f ;N/p, whereN is a positive constant that represents a
common value of local densitiesN+ and N− [see Eqs.(11)
and (12)]. For this homogeneous solution the advection ve-
locities in Eqs.(23) and (24) are given by

U ; 0, V ; V0 ; − 2sp − adVsNd. s48d

The linearized equation fordf ; f −N/p is

]Tdf + V0]tdf +
N

p
f]xsdUd + ]tsdVdg

= 2psD1 + D2d]xxdf + 2pK]ttdf . s49d

Here, dU and dV are linearized perturbations ofU and V
induced by the perturbationdf of f. From Eqs.(23) and(24)
we obtain

dU = V8sNdE
a

p E
0

p

fdfsx − s+ f,t + s+ fd

− dfsx + s− f,t + s+ fdgdfds s50d

and

dV = − V8sNdE
a

p E
0

p

fdfsx − s+ f,t + s+ fd

+ dfsx + s− f,t + s+ fdgdfds. s51d

Equation(49) has exponential solutions of the form

dfsx,t,Td ~ expsikx + ilt + sTd. s52d

Herek is any real number andl is an integer because of the
2p periodicity of fsx,td in its second argument. The growth
rate is given by

G ; Ressd = Reslsk,ldd − 2psD1 + D2dk2 − 2pD2l
2,

s53d

wherelsk, ld is defined by

lsk,lddf = −
N

p
f]xsdUd + ]tsdVdg, s54d

with df given by Eq.(52). Substituting Eq.(52) into Eq.(54)
givesl:

l = 2iV8sNdNs− 1dlHeiKasinfKsp − adg
sinsLpd

Lp

+ eiLasinfLsp − adg
sinsKpd

Kp
J , s55d

where

K ;
l − k

2
, L ;

l + k

2
. s56d

Using the result in Eq.(53) we obtain

G = 2V8sNdNs− 1dl+1HsinsKadsinfKsp − adg
sinsLpd

Lp

+ sinsLadsinfLsp − adg
sinsKpd

Kp
J − 2psD1 + D2dk2

− 2pD2l
2. s57d

Note that, in the limitl →k, Eq. (57) reduces to the growth
rate of waves with speed near 1, Eq.(45). We show that the
resulting linear instability analysis does not provide a mecha-
nism for wave speed and wave number selection.

For simplicity consider the lowest-frequency model =1
and suppose thatD1=D2. Equation(57) reduces to

FIG. 6. Neutral stability curves for different wave numbers:k
=1, solid line;k=2, dashed line; andk=3, dotted line. The shaded
area shows the parameters where only one wavelength is growing.
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G = 2V8sNdNHsinfs1 − kda/2gsinfs1 − kdsp − ad/2g

3
sinfs1 + kdp/2g

s1 + kdp/2
+ sinfs1 + kda/2g

3sinfs1 + kdsp − ad/2g
sinfs1 − kdp/2g

s1 + kdp/2
−

2C

3
k2 −

C

3
J ,

s58d

where C is defined as in Eq.(46). Figure 7(a) shows the
growth rateG as a function of wave numberk for specific
values parametersC and a so thatsC,ad lies in the region
corresponding to growth ofk=1 waves only(this point is
denoted by an asterisk in Fig. 6). Note that the waves with
wavelength(5) correspond tok=1 and do not have the maxi-
mum growth rate. Figure 7(b) shows neutral stability curves
computed from Eq.(57) for different values ofk. As one can
see, the growth region for each wave number would include
the growth regions of all larger wave numbers as a subset. To
conclude, the results of this section show that the linear sta-
bility analysis of the weak-signaling model does not provide
a wave-speed and wavelength selection mechanism. This re-
sult is corroborated by numerical solutions of the full system
(1)–(4).

VI. COLLIDING WAVES

A. Reversal-point density representation of a full solution

Numerical solutions of the full system, Eqs.(1)–(4), start-
ing from an initially random perturbation of homogeneous
solution do not asymptote to periodic waves unless the sig-
naling is sufficiently strong(data not shown). We show that

the framework developed in this paper still allows us to see a
focusing mechanism of the developed pattern that counter-
acts diffusive spreading.

At sufficiently strong signaling[v1*v0 in Eq. (4)], Eqs.
(1)–(4) with periodic boundary conditions always asymptote
to “colliding-wave” solutions: The space-time behavior of
the total densitysN++N−d superficially resembles a superpo-
sition of counterpropagating waves with speed ±1[Fig. 8(a)].
This pattern is often observed experimentally as a time lapse
movie of consecutive phase contrast images[14,15] and ex-
perimentalists refer to “waves passing through each other
without interference.” That clearly distinguished these waves
from developmental waves in other microorganisms such as
Dictyostelium discoideumwhich are known to annihilate
upon collisions[5,6]. Figure 8(a) shows a space-time plot of
the total density solution. High-density bands tilted 45° and
135° from thex axis are right- and left-going crests, respec-
tively. Figure 8(b) shows the corresponding space-time den-
sity of LR reversal points obtained from a full solution of

fLRsx,td ; nsx,f = 0+,td. s59d

This equality follows from the fact that cells with the phases
0,f,dt at time t reversed during time intervalst−dt,td
[see Fig. 3(a)].

Comparing Figs. 8(a) and 8(b) we conclude that most of
the cells reverse during crest collisions. That means that the
colliding-wave solutions of Eqs.(1)–(4) are not a simple
superposition of two traveling waves with speeds ±1 in
which the reversal-point distribution is proportional to den-

FIG. 7. (a) Growth rate Eq.(58) as a function of wave number.
Parameter valuesC=0.3 anda=p /4 are used. This point is denoted
by an asterisk in Fig. 6.(b) Neutral stability curves for different
wave numbers. FIG. 8. (a) Space-time surface plot of the total densityN++N−

computed from solution of the full system Eqs.(1)–(4). (b) Space-
time surface plot of the reversal point density. Parameters in dimen-
sionless units[Eq. (6)] are v1=1.2, Dx=Df=0.01, a=p /10, and
q=4.
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sity of the crest[see Eq.(13)]. Instead LR reversal points are
concentrated at crest intersections. The same observation
would apply if we plot the space-time density of RL reversal
points fRLsx,td;nsx,f=p+,td. These plots show that the
traveling wavesreflect from one another on each collision;
i.e., right- and left-going crests exchange most cells. A few
cells are in their refractory period during collision and do not
reverse immediately. This accounts for the light bands in Fig.
8(b).

B. Focusing mechanism

The mechanism of focusing in “colliding waves” is easy
to visualize by following the distribution of the reversal
points (Fig. 9). Light gray bands in Fig. 9 represent dense
crests[compare with Fig. 8(a)]; for simplicity, only parts of
these bands are shown. Bands tilted to the right and left
represent concentrations of right- and left-moving bacteria.
Dark gray rectangles represent the support of reversal points.
Trajectories of four sample cells are shown. As cells glide to
the right they leave the concentration of left-moving cells
while still refractory. The cells eventually reach the next con-
centration of left-moving bacteria. Since they are now sensi-
tive, their phase clocks are accelerated. Cells in the front part
of the crest(1 and 2) hit the the concentration of left-going
cells before cells in the back of the crest(3 and 4). As a
result they suffer more collisions so that their phase clocks
are accelerated more and they reverse sooner. Thus the re-
gion of support of reversal points gets focused in thex+ t
direction. In the same fashion cells 1 and 3 will hit the next
concentration of right-moving cells before cells 2 and 4 and
reverse sooner. This results in a focusing of the region in the
x-t direction. Diffusional spreading would counteract the fo-

cusing to produce the final amplitude waves. The formalism
developed in Sec. III makes these qualitative arguments
quantitative.

In the weak-signaling limit the colliding waves in Fig. 8
correspond to a solution of Eq.(36) with a period near 2p in
both x and t directions. Imposing these periodic boundary
conditions we show that colliding waves are a stable solution
of Eq. (36) but have a limited domain of attraction. Figure 10
shows a density plot of the the steady-state solution. The
inset shows a contour plot of the density as well as the con-
vective vector fieldsU ,Vd. As one can see from Eq.(24),
V,0, and, therefore, there is a permanent downward drift of
reversal points in time. This drift is nonuniform; cells drift
downward faster in the upper part of the density peak of the
reversal than in the lower part. Therefore, the convective
velocity V focuses the peak along the time coordinate. The
spatial componentU of the convective velocity changes sign
from positive in the left part of the peak to negative in the
right part of the peak. It is zero along the symmetry axis of
the peak. Thus, the velocityU results in no net drift in the
spatial direction, but still produces focusing that counteracts
inevitable diffusion. Since the spatial diffusion coefficient in
Eq. (36) is always larger than the time diffusion, the peak
spreads more in the spatial direction.

VII. SUMMARY

Pattern formation in microorganisms has been extensively
studied, both experimentally and mathematically. A few no-
table examples include periodic patterns in colonies ofPro-
teus mirabilis [24,25], Salmonella typhimurium[26], Es-
cherichia coli [27], Bacillus subtilis[28], andDictyostelium
discoideum[3–5]. Formation of these patterns depends on
diffusion-mediated chemotaxis and/or growth and death of
the cells. These patterns are quite different from the rippling
in myxobacteria that originates because of the synchroniza-
tion of internal clocks that control the spatial motion of in-
dividual cells. The synchronization is achieved by contact-
mediated signaling during end-to-end cell collisions. The
existence of the refractory period is crucial for the synchro-
nization: this is the main prediction of the model. Although
refractory periods have been shown to be generic in eukary-
otic systems, this is the first demonstration of a refractory
period in a bacterial system[2]. The analysis performed in
this work reveals the synchronization and pattern formation
mechanism.

FIG. 9. Iterative focusing of colliding waves.

FIG. 10. Reversal-point density and convective velocity field for
colliding waves. Parameters are asa=p /4, Dx=Df=0.05, andq
=4.
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The focusing mechanism of the waves is clearly visible
by tracking reversal points of cells in space-time. In the
weak-signaling limit we derive an evolution equation tracing
the distribution of reversal points(Sec. III). Linear stability
analysis determines parameters favorable for the develop-
ment of the waves with a given speed(Sec. IV), but does not
reveal the wavelength and wave number selection mecha-
nisms(Sec. V). Numerical simulations of the equations show
that there are stable wave solutions corresponding to the ex-
perimentally observed ripples(Sec. VI). However, in the
weak-signaling limit the basin of attraction of these patterns
is small; i.e., these patterns do not develop starting from
random perturbation of homogeneous initial data(Sec. VI).
In fact, the numerical simulation of the full system, Eqs.
(1)–(4), shows that both strong signaling and nonlinear den-
sity dependence are essential for the wave number selection
mechanism. Thus, any linear stability analysis is not capable
of predicting the correct wavelength. Therefore, the analysis
of the wave speed and wavelength selection mechanism for
the myxobacteria density waves remains an open question.
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APPENDIX: ALTERNATIVE DERIVATION OF REVERSAL-
POINT DENSITY EVOLUTION

In Sec. III we presented a geometric derivation of Eq.
(36). Here we present an alternative, more formal derivation

based on the asymptotic expansion of the density function
nsx,f ,td. In the small-signaling and -diffusion limit[with
signaling and diffusion both proportional toe as in Eqs.(18)
and (32)], we seek an asymptotic expansion of the density
function

nsx,f,t,ed , n0sx,f,t,td + en1sx,f,t,td + ¯ . sA1d

Heret represents the “slow time”

t ; et sA2d

and termsnisx,f ,t ,td of the perturbation series are 2p peri-
odic in f and t. The rational behind Eq.(A1) is that for e
=0 (no signaling and no diffusion), the general solution for
nsx,f ,td is exactly 2p periodic in f and t. The effect of
small signaling and diffusions0,e!1d is to slowly change
or “modulate” the arbitrary functionfsx,td which appears in
Eq. (9) over a characteristic time that isOs1/ed. In fact, the
leading-order termn0sx,f ,t ,td in Eq. (A1) has the form(9)
with an additional dependence upon the “slow time”t:

n0sx,f,t,td = H fsx − f,t − f,td, 0 , f , p,

fsx + f − 2p,t − f,td, p , f , 2p.

sA3d

The actual dependence off upont is yet to be determined.
The essential idea is to formulate an evolution equationf
with respect to the slow timet so that the first-order term
n1sx,f ,t ,td in Eq. (A1) is 2p periodic in t. The 2p period-
icity of n1 in t ensures that the perturbationen1 remains
Osed!1 for time t=Os1/ed [which correspond tot=Os1d].
Using the expansion(A1) in Eqs. (1) and (2) together with
Eqs.(6), (18), and(32), it follows that the density perturba-
tion n1sx,f ,t ,td satisfies

]tn1 + ]xn1 + ]fn1 = H − ]tn0 + D1]xxn0 + D2]ffn0, in 0 , f , a,

− ]tn0 − V−]fn0 + D1]xxn0 + D2]ffn0, in a , f , p,
sA4d

]tn1 − ]xn1 + ]fn1 = H − ]tn0 + D1]xxn0 + D2]ffn0, in p , f , p + a,

− ]tn0 − V+]fn0 + D1]xxn0 + D2]ffn0, in p + a , f , 2p,
sA5d

whereV−=VsN−d andV+=VsN+d.
Boundary conditions on each of the four boundariesf

=0, a, p, andp+a are required. Notice that, in the absence
of diffusion, the solution of Eqs.(1) and(2) is discontinuous
across these four boundaries if signaling is present, so that
the flux v±n is continuous. Expanding these flux continuity
conditions in the limit of small signaling one obtains condi-
tions for n0 andn1. The zero-order condition requires conti-
nuity of n0 and it is satisfied by the solution, Eq.(A3). The
first-order-in-e term allows us to compute the jumps ofn1
across the phase boundaries:

fn1gf=0 ; n1uf=0+ − n1uf=2p = V+n0uf=2p, sA6d

fn1gf=0 ; n1uf=a+ − n1uf=a− = − V−n0uf=a, sA7d

fn1gf=p ; n1uf=p+ − n1uf=p− = V−n0uf=p, sA8d

fn1gf=p+a ; n1uf=p+a+ − n1up+a− = − V+n0uf=p+a. sA9d

For small phase diffusionD2.0, the densityn is actually
continuous across the four phase boundaries but there are
sharp boundary layers of thicknessOsed about the boundary
pointsf=0, a, p, andp+a. The jumps across these bound-
ary layers are, to leading order ine, the same as in the case
of zero phase diffusion.
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Figure 11 shows characteristics of the left-hand side of
Eqs. (A4) and (A5) projected onto thex,f plane. The
changesdn1

sid-sivd of density n1 along each of the segments
(i)–(iv) (Fig. 11) are straightforward to compute integrating
the right-hand sides of Eqs.(A4) and (A5) with use of Eq.
(A3):

dn1
sid = af− ]t + D1]xx + D2s]t + ]xd2gf , sA10d

dn1
sii d = sp − adf− ]t + D1]xx + D2s]t + ]xd2gf

+ s]t + ]xdfE
a

p

V−sx + s,t + sdds, sA11d

dn1
siii d = af− ]t + D1]xx + D2s]t − ]xd2gf , sA12d

dn1
sivd = sp − adf− ]t + D1]xx + D2s]t − ]xd2gf

+ s]t − ]xdfE
p+a

2p

V−sx + s,t + sdds. sA13d

Enforcing 2p periodicity in t, one computes the change inn1
along the characteristic line shown in Fig. 11 fromx,t to
x,t+2p as

n1uf=2p − n1uf=0+ = − fn1gf=0 = dn1
sid + fn1gf=a + dn1

sii d

+ fn1gf=p + dn1
siii d + fn1gf=p+a + dn1

sivd.

sA14d

Using Eqs.(A3) and(A6)–(A13) in Eq. (A14), after cumber-
some but straightforward calculations, one obtains the fol-
lowing equation forfsx,t ,td:

]tf +
1

2p
f]xsUfd + ]tsVfdg = sD1 + D2d]xxf + D2]tt f ,

sA15d

whereU andV are defined by Eqs.(20) and(22) or, equiva-
lently, by Eqs.(23) and (24). This equation is equivalent to
Eq. (36) sincet=2pT.
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