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Developmental waves in myxobacteria: A distinctive pattern formation mechanism
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In early stages of their development, starving myxobacteria organize their motion to produce a periodic
pattern of traveling cell density waves. These waves arise from coordination of individual cell reversals by
contact signaling when they collide. Unlike waves generated by reaction-diffusion instabilities, which annihi-
late on collision, myxobacteria waves appear to pass through one another unaffected. Here we analyze a
mathematical model of these waves developed editshinet al, Proc. Natl. Acad. Sci. USA8, 14 913
(2001)]. The mechanisms which generate and maintain the density waves are clearly revealed by tracing the
reversal loci of individual cells. An evolution equation of reversal point density is derived in the weak-
signaling limit. Linear stability analysis determines parameters favorable for the development of the waves.
Numerical solutions demonstrate the stability of the fully developed nonlinear waves.
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[. INTRODUCTION one another when they collide. We have come to refer to
them as “accordion waves,” and they are quite unlike the
Waves and wavelike phenomena are everywhere in natuighemotactic waves irDictyostelium discoideuni3—6] or
but their underlying mechanisms are very diverse. Well-chemical wave$2,19 that annihilate on collisionDictyos-
studied examples include inertial waves in fluid mechanicgeljum waves are based on induced release of an attractant,
and elasticity and Turing InStablllty waves in excitable CAMP, by each cell to which they respond by moving up the

chemical media. The latter mechanism has been used {gcal cAMP gradient. The pattern formation mechanism in
model a variety of biophysical phenomena such as calcium

waves in vertebrate egdg, progression of epidemic fronts
[2], chemotactic waves of the slime mdhictyostelium dis-
coideum[3—6], and pigmentation patterns on sea shgll§]

and other animalf9,10] (see alsd2] and references thergin
The Turing mechanism depends crucially on diffusion and so

these patterns are referred to as diffusion-reaction patterns. \i

In contrast, the density waves observed during the develop- Toas

ment of Myxococcus xanthuarise in a completely different ;_,;1’.7 ;

way. S S
Myxobacteria are rod-shaped bacteria, well known for :‘(‘:f%:j}z‘ X

their social lifestyle and complex developmental patterns k-.;.;._”/'\{{g_' o

[11-18. Under starvation conditions cells aggregate into ;/'i".;\ \w\{‘g

multicellular mounds called fruiting bodies. Just before the
aggregation begins the surface of the colony is often covered
with well-organized periodic patterns of equispaced high-
cell-density bands that move as traveling waves, often re-
ferred to as “ripples{Fig. 1) [14,15,18. In certain circum-
stances the waves can persist for hours with no net mass
transport[14], analogous to water waves. The wave crests
appearto pass through one another with no interference
[14]. Actually, the waves do not interpenetrate, but reflect off

FIG. 1. Ripples as seen in phase contrast microsa@pyoex-
isting planar, spiral, and concentric wauesurtesy of Brian Sager
*Corresponding author. FAX510) 642-7428. Electronic address: and Dale Kaiser (b) Planar waves at the edge of submerged culture
goster@nature.berkeley.edu (courtesy of Roy Welch and Dale Kaiger
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myxobacteria is different because they communicate only by a Left
direct cell contac{20,21].

Il. MATHEMATICAL MODEL

The mathematical model describing the ripple phase was
presented in Ref[22] based on experimental observations
summarized in Ref§14,15. The essential ingredients of the
model are as follows.

(i) Each myxobacterium glides along its long axis. It pe-
riodically reverses its gliding direction not by making a U
turn, but by switching its “front” and “rear” ends. An internal
biochemical cycle controls the reversals in direction.

(i) Cells collide with oppositely moving cells. During
each “head-to-head” collision cells exchange a contact signal
which accelerates their reversal cycle. The collision
frequency—and therefore the signaling intensity—is propor-
tional to the local cell density.

(iii) After each reversal the cell enters a “refractory pe-
riod” during which it does not respond to collision signaling
and does not reverse.

In many experimentally observed situations rippling is es-
sentially a one-dimensional phenomenon since cells are pre-
dominantly aligned in parallel. For instance, in R15]
cells glide parallel to an impermeable boundary of a sub- 0 a T T 2n
merged culturg¢Fig. 1(b)]. In different conditiongFig. 1(a)]
myxobactgrla generate com_plex patterns of mterpenetratlngrcle_(b) Typical cell trajectories on th&x, ¢) plane. Arrows show
planar, spiral, and concentric wavgs4]. These wave pat- the direction of increasing time,
terns can be reproduced by the mathematical model summa-
rized above if the cell orientation dynamics is taken into

FIG. 2. (a) Mapping of the internal biochemical cycle on a

account[23]. In this paper we will restrict ourselves to one- 0:(X0<d<at)=oXT<P<Tm+at)=w.
dimensional ripple_ patterns by assuming that cells only move |, ihe sensitive intervals of their cycldse< <,
parallel to thex axis. +a<¢<2m), the cell phase velocity is determined by the

In order to represent the internal biochemical cycle mathy, mber of collisions(signaling events they receive. We

ematically we map it onto the circle as shown in Figa)2  gha)| assume that most of the collisions occur between oppo-
and describe it by a phase coordingteCells with 0< <7 gjtely moving cells with a rate proportional to the local cell
move to the right(+x direction), and cells withm< <27 density. Therefore

move to the lefi{—x). Therefore, a population of cells can be
characterized by the density functioix, ¢,t) giving the
number of cells in a neighborhood of pointvith phases at xa<d<mt)=olN(t
time t. Since cell division and death are negligible on the oXa<g<mh=alN-xD),
time scale of rippling, the density obeys the conservation
equations
N+ 0odN + Dydo + dy@,N) + D ydyyn =0 in 0< ¢ < , o-Xmta<$<2mh=a.(u0),
(1)
where
(?tn - UoO-'Xn + DX&XXn + (?¢((1)_n) + D¢&¢¢n

=0inT< ¢p<2m. (2

T 2

Here vo=const is the spatial velocity of individual cells; N+(X't):f n(x, ¢,t)de, N—(X,t):f n(x, ¢,t)d¢
w.(X,¢,t) and w_(X, ¢,t) are the angulafphase velocities 0 &
describing how fast cells at a given position and phase 3
progress through their reversal cycle. The diffusion terms in
Egs. (1) and (2) model random fluctuations in space and
phase velocities. are the local densities of right and left going cells at a given

Right after reversals, in phase intervals<@<a and  pointx, regardless of phase. The functiendetermines den-
T<¢<w+a the cells do not respond to signaling and sity dependence of signaling. We choseto be a generic
progress with constant angular speegl[Fig. 2a)] : saturating sigmoid functiof22]
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Nd a b .
o(N) = wo + L NG (4) t,
t-dr N. ot
Here w(0) can be chosen to be equal to the phase velocity in X R 0 =

the refractory period.
One can track paths of individual cells in the ¢) plane. c d
Figure 2b) represents typical trajectories of a cell in the
absence of diffusion. In the first refractory phase interval
(0,a) a cell moves at constant speed,ytn the x direction
and constant speed, in the ¢ direction, and so the cell
trajectory is represented by a straight line. As a cell enters its
first sensitive period it continues to glide with speeg, in t t
the x direction but speeds up ith depending on the local
density of counterpropagating cells according to E4).
Hence, the cell’s trajectory curves downward in this interval. X
At phase ¢=, the cell reverses its spatial direction. The 5 5 (o) Reversal points in the intervat—dt,): cells that
spatial and phase velocities in the se_cond refractory interval,erse from left to right in the time intervéi-dt,t) would have
T<¢<mta are vo and wo, respectively. In the second ,aseq0,dt) at timet. (b) Example of a kinematic right-traveling
sensitive interval the cell accelerates in #edirection and  yave solution(c) Space-time trajectories of cells in the kinematic
its trajectory curves upward. When the cell reacthe=2m, it ight-traveling wave(d) The same as ic) but perturbed by weak

continues, starting witkp=0 and the samg. signaling. Cells entering the crest reverse faster and are focused:
Numerical solutions of the model equations show that,.e., the cell density increased with each reversal.

over a certain range of parameters, spatially homogeneous

sp!utlor}s'are un§tab[<22]. Dependmg on 'th_e bqundary con- IIl. REVERSAL-POINT DENSITY

ditions it is possible to produce either unidirectional or coun- . o .
terpropagating waves as steady-state solutigR23. Semi- Before we pr_oceed with the analysis it is convenient to
guantitative arguments show that the wavelengtis given  nondimensionalize Eq$l) and(2) so that

by [22] wp=1, vg=1, N,=1. (6)

\ = 20q7R, (5) Therefore, we measure time in units ofdy/and length in
units of vg/ w.
where 7y is the average time between reversals.
The outline of the subsequent parts of the paper is as ) _

follows. In the next section we show that the mechanisms A. Kinematic waves
which generate and maintain the density waves are clearly We begin by analyzing solutions of Eq4) and(2) in the
revealed by tracing the reversal points of individual cells. Anahbsence of signalin§w;=0 in Eq. (4)] and diffusion (D,
evolution equation of reversal point density is derived in the=p =0). In this case Eqg1) and(2) reduce to
weak-signaling limit. In the body of the paper we present a

geometric derivation of the evolution equation. A more for- gn+on+d,n=0, in 0<op<m, (7)
mal derivation based on asymptotic expansions is presented
in the Appendix. Section IV analyzes unidirectional-wave dn=-an+d,n=0, in w<p<2m, (8)

solutions with speed neag. The linear stability analysis of | ,

the evolution equation determines the range of model paran¥Vith n continuous acrosg=m and ¢=0(2m). The general
eters for the growth of waves with wavelength given by Eq.Solution of this boundary value problem is

(5) anq vv_ith speed nearo. A more general linear ins_tability { f(x— t— ), 0< <,

analysis is performed in Sec. V. The results of this section n= 9
indicate that the linear stability analysis of the weak- fx+d-2mt-¢), m<d<2m,

signaling model does not provide a wave speed and wavgyhere f is an arbitrary function, 2 periodic in its second
length selection mechanism. Numerical simulations anGrgument:

analysis performed in Sec. VI demonstrate the stability and

focusing mechanism of the fully developed nonlinear waves. f(x,t) = f(x,t = 2m). (10)

This property follows from continuity acrosg=0(2).
YL et ¢ be an assignment of phase so that the refractory phase The functionf(x,t) has a clear physical interpretation.
velocity is p=wq for 0< ¢< . Define a new phassg, related top ~ Consider the density of cells at poixthat reverse from left
by a “gauge transformationji(¢). Then the angular velocity with ~ to right betweert—dt andt [see Fig. 8a)]. These cells have
respect toy in the refractory period isv=y=y'(¢)w,. We can Phases & ¢=dt, so their density isn(x,0,)dt=Ff(x,t)dt.
always enforcew=w(0) in 0<y<y(a) by choosing ¢ (¢) Therefore,f(x,t) represents the density of left-to-rigtitR)
=w(0)/ wy. reversal points in spacetime. By analogy, the density of right-
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to-left (RL) reversal points is given bf(x—,t—m). Thus, (x.{+2%)
in the absence of signaling and diffusion, E¢g) and (8) P+ 8,0+ 274Dy
allow us to recover the space-phase density distribution from (x4704+7)

the space-time density of reversal points. In addition, the
spatial densities of right- and left-moving particles are given

by

N.(x,t) = f f(x= ¢t = ¢)dg, (11)
0 FIG. 4. Perturbations in a single-cell trajectory by a small

. signaling.

N_(x,t):f f(x+¢—-2mt- ¢p)do. (12
- ¢ )¢ reversal point is perturbed by the veci@ix, &t). Knowing

the timest, andt_ that a cell travels to the right and left the

Itis easy to show that, in the absence of signaling, Es. components of the perturbation vector arecalling Eq.(6)]

and(8) admit kinematic traveling-wave solutions with speed

+1. Traveling waves of velocity +1 are obtained by taking X=t,—t, &=t,+t_-2m. (15)
f(x,t)=F(t—x). It follows from Eqg.(10) thatF has to be z _ - _
periodic. From Eq(11) one concludes that Assuming that the densitield, are given along the cell's
trajectory, one can compute, and obtain implicit equations
N.(x,t) = mF(t = X). (13)  for t,. For instance, the phase shift between LR reversal at

From Eq.(12) it follows that (x,t) and RL reversal atx+t,,t+t,) is given by

27 L
N(x1) = f F(2(m~t-2¢) - X)d¢ ™= L 0i(x+ 58t +s)ds. (16
2m In the same fashion one obtains the opposite reversal phase
:—f F(t+s-xds=(N,). (14)  shift by
0
t_
Since F(x) is 27 periodic, N_(x,t) is constant. The second W:f w_(X—s+t,,7+s,t+9s)ds. (17)
equality shows that this constant is in fact the average value 0

of N,(x,t) [Eqg. (11)] over one period. Suppose that initially

N, is a 2mr-periodic sequence of narrow pulses axdis a

constant equal to the average value(Nf) [Fig. 3b)]. The w(N) =1 +eQ(N), (18)

corresponding space-time trajectories of particles are shown

in Fig. 3b). Each of the particles travels in “zigzag” fashion wheree>0 is a small gauge parameter. In this case Etf.

on the(x,t) plane. The time duration between reversals isand(17) can be solved iteratively far.. Substituting results

equal to, the distance traveled between two consecutivénto Eq.(15) one obtains

gz\llsrizazlzrl;alsm, and the net displacement after two rever Sx= eU(xt) + O(ED), (19
We now examine how signalingven if very weakper-  \ynere

turbs this simple kinematics to induce focusing of the bands

in Fig. 3(c) which counteracts diffusion. Figure(d illus- g

trates the focusing effect. As the left-going cells enter a bandY = f [QN(x+ 7 =st+7+59) - QN(x+st+5))]ds

of right-going cells(i.e., a wave cregthey receive sufficient “

signals to reverse earlier than they otherwise would have. (20)

Consequently, the reversal points of these cells will drift

closer together, sharpening the crest. This focusing effecﬁmd

will be counteracted b)_/ spregding due to quctyatic_ms in St=eV(x.t) + O(), (21)

speed and phase velocity, which we model as diffusion. In

the following subsections we derive an equation describingvhere

how the evolution of the reversal point density is influenced

by these effects. — _f [Q(N,(x+ 7—St+7+9))

B. Small-signaling limit

Now consider the weak-signaling limit defined by

: : . : + Q(N-(x+s,t+s))]ds. (22
Figure 4 illustrates how signaling perturbs the mapping

from one reversal point to the next. (i,t) is a LR reversal Note that in order to obtain the leadir@(e) terms in the
point of a cell, ther(x,t+27) is its next LR reversal point in expansion fotJ andV one can use expressions fér in the
the absence of signaling. In the presence of signaling thigo-signaling limit—i.e., Eqs(11) and(12). Consequently,
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U~fwds{ﬂ<fﬂf(x—s+ P,t+s+ ¢)d¢) (Z_(fz“’i”d’(t)’ (;—X-1+rx(t). (30

0 t

If one assumes “white noise” specta for the fluctuatiops

—Q(fﬂf(x+ sS—¢t+s+ ¢)d¢>] (23 andr,,

0

and (rpy =(ro =0, (ry(ry(0)) =D4d(1), (31)
Ve~ - fwds{(l(fwf(x— S+ ¢ t+s+ ¢)d¢) (1 (0)) = DA,
a 0 then the noise terms manifest themselves as diffusion terms

w in Egs.(1) and(2) for densities. In this subsection we derive
+ Q(f f(x+s—¢,t+s+ ¢)d¢>> . (24) how diffusion affects the evolution of the reversal-point den-
0 sity f. In general, for steady wave solutions to exist the dif-

These results enable us to construct a mapping of thBJSiOH terms must have the same scaling as the signaling—

reversal-point distribution: Suppose one is given the'-®+
reversal-point density distributiorﬁ(x,t)_for all X and O Dy=eD;, Dy=eD,. (32)
<t<2w. We can construct the mapping of this reversal- o . .
point distribution to the next time slicer<t<4a. The re-  The effects of diffusion and signaling can be shown to be
versal point densitie$(x,t) and f(x+&x,t+27+ 8t) are re- additive to leading order ia. We will assume this additivity
lated by the Jacobian describing changes in the space-tinfld derive the evolution of the reversal-point density with
unit area: noise but zero signaling.

Integrating the phase equati¢B0) one obtains equations
140X  a () for t,, the duration of the right-going interval

f(x,t) = f(x+ X,t+ 27+ &) W30 L+a(sy |
t t

t,
(25) T=t+ f r¢(S)dS.
0
Substituting Eqs(19), (21), (23), and(24) into Eq.(25) and i )
expandingf in a Taylor series, one obtains Using Eq.(31) and(32) one obtains
f(x,t+2m) — f(x,t) + el (UF) + (VH} =O(€d). (26) (to=m, ((t,—m? =2meD,. (33

Note that in order to determirig andV from Egs.(23) and ~ The same formulas hold fdr, the duration of the left-going
(24) one has to use values bfrom 0 to 4m—i.e., from both  interval. The time drift of the reversal points is given by
time slices. Therefore, the mappin@6) looks implicit. _ o B

However, sinceU and V appear only inO(e) perturbation A=t -2 =(t, - m) + (- 7).
terms, one can use a periodic extension fofinto the  Thus,
2r<¢p<4w time slice to make this mapping explicit. )
Defining ((81)%) = 4meDs. (34)

f(xt)=f(xt+2mm), 0<t<2m (27)  Inthe same fashion we obtain that

t+t

X=({t,—m—-(t.—m)+ f r.(s)ds,

0

one can generalize E(R6) as

Frea (1) = Fi(x,t) + e{d(Unfn) + a(Vaf )} = O(€)).
(28)
The subindexh on U andV implies that they are evaluated
using f, and its periodic extension.

In the limit of small € but large n=0(1/¢) one can
asymptotically rewrite this iteration mapping as a partial dif-

ferential equatior(PDE) for f(x,t,T=en): drf + 0, (UF) + 4(VF) = 201(D; + D) A f + 27D F .
orf + a(Uf) + g(VFf) = 0. (29 (36)

(X)) = 4meD, + 4reD;. (35)

Therefore, noise terms result in diffusion in the reversal-
point density equation with diffusion constant2, in t and
2m(D;+D,) in x. The resulting equation fof(x,t,T) is

In the Appendix we show an alternative way of deriving this
equation based on multiple-scale asymptotic analysis.

In some range of parameters the focusing effects of the
Fluctuations in the spatial and phase velocities of indi-convective terms in Eq:36) would dominate the diffusion
vidual cells are inevitable. We model them by adding inde-terms so that the homogeneous solution becomes unstable.
pendent random terntg(t) andr ,4(t) to the spatial and phase The easiest way to illustrate this is to consider unidirectional

velocities, respectively: traveling waves.

C. Effects of fluctuations on the phase velocity and speed
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0 crest—i.e., keeping the waves focused. This focusing bal-
ances diffusive spreading of the crest to create the finite-
amplitude steady wave§ig. 5).

Numerical simulations of Eq(38) show that the wave
amplitude decreases with increasing diffusion or decreasing
signal strength. At some point spatially homogeneous solu-
tions become stable solutions. To obtain an estimate of this
threshold we perform a linear instability analysis of E3B)
about the homogeneous solution

w18

_ F&M

mF(ET) =N+ G(ET). (41)
. The linearized equation fdB(&,T) is
0 T 2w
#G + 2W29,G + 2NGWP = 2m(Dy + 2D,) 9, G, (42)

FIG. 5. SolutionF(£,T) of Eq. (38) for largeT, left axis, solid
line, and corresponding focusing velochy, [see Eq(40)], right ~ Where
axis, dashed line. The parameters used are as foll@ws:2D, 0 — _
=0.1, Q(N)=N%/(1+N%), and =0.15x. WO'=20(N)( - ),

2
IV. UNIDIRECTIONAL WAVES OF SPEED 1 (;gw(l) = agj Q' (N)G(€- y)dys
2a
We have shown that, in the absence of signaling and dif-

fusion, there are kinematic waves of speed 1. In the presence = Q' (N[G(£ - 20) - G(§)].

of weak signaling and small diffusion, E(6) allows finite- Equation(42) has exponential solutions of the form
stationary-amplitude traveling-wave solutions with speed .

near 1. We search for solutions of §&6) of the form G(&T) = exploT +iké), (43)

wherek=1,2...;i.e.,k is an integer to ensurem2periodicity

ftD=FED, £=x-t (87 of solutions. Using Eq(43) in Eg. (42) we obtain
It follows from Eq. (10) that F has to be 2 periodic. In o= - 4QN) (7 — @) - 2NQ' (N) (€ 2% = 1) + 277(D,
dimensional units this period corresponds to the wavelength X
A=2vg7g in Eq. (5). F(£,T) obeys +2Dy)k". (44)
o4 + 20,(WF) = 27(D; + 2D,) I (39) The growth ratd” is given by
I' = Re(o) = 2NQ/ (N)[sir?(ak) — CK?], (45)
where
where the competition of diffusion and focusing is expressed
W =U-V by a parameter
G C= m(D4+2D,)/[NQ'(N)] = 7(2D, + Dy)/[Nw'(N)].
= 2J Q(mF (£~ 25,T))ds 1202 : #+ D :
N (46)
2m In the last last equality we express€din terms of the un-
:f Q(mF (&= ¢, T))dy. (39 scaled phase velocity and diffusion using EGs) and(32).
2 Figure 6 shows the neutral stability curves definedlby

. . . =0 for diff . F Eq.(45) it foll
The last equality allows one to see that, if there is no refrac: 0 for different wave numberk. From Eq.(45) it follows

) ~ . o : that a given wave number will grow for parameter values
tory period(«=0), then becausk is periodic, the velocitiV below the corresponding curve. It is evident that the growth

does not dgpend .ofland so_provides a constant drjft rqther region for each wave number would include growth regions
than focusing. It is convenient to separate out this drift byt 5 |arger wave numbers as a subset. The shaded region of
rewriting Eq.(39) in the form Fig. 6 depicts the region where only tlke1 wave grows.
o 2 This wave number corresponds to the wavelengt?v
W(E) = f Q(mF(€- ¢, T))dy - f Q(mF(€- ¢, T))dy [Eq.(5)]. Higher wave numbers correspond to smaller wave-
0 0 lengths. In the area above the solid line in Fig. 6 the growth
rate is always negativE <0 so that the homogeneous state

= Wo+Wa(¢). (40) is stable. Thus unidirectional waves with speed near 1 grow
Figure 5 shows typical solution of E¢38) and the corre-  if
sponding drift velocity. As one can see from Fig. 5 and from (2D ,+ D) < [No' (N)JsirPa. (47

Eq. (40), W, is always negative and its minimum is shifted to
the right of maximum of by 2a. Hence, cells at the front of This criterion is similar to the one developed in RgX2] by
the wave crest tend to drift toward the cells in the back of thesemiquantitative arguments. Equati@?) refines that analy-
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1 a o
I 5U:Q’(N)j f [6f(Xx—s+ P, t+S+ )
0.8 a J0
0.6L - 8f(x+s— ¢t +s+ ¢)|dgds (50)
C kel and
0.4
B ’t - T T ™
0.27 ,/ \\\]C=2 /, \\ ) W:—Q’(N)I f [3f(X—S+¢,t+S+¢)
| A k=3 LY | @0
0 /2 T + 0f(x+s— ¢t +s+ ¢)|depds. (51
o

o , Equation(49) has exponential solutions of the form
FIG. 6. Neutral stability curves for different wave numbeks:

=1, solid line;k=2, dashed line; ank=3, dotted line. The shaded

area shows the parameters where only one wavelength is growing. (1, T) = explikx +ilt +oT). (52)

Herek is any real number andis an integer because of the

sis in several important ways. It shows how space and phasg; periodicity of f(x,t) in its second argument. The growth
diffusion contribute differently to the spreading of the waves 46 s given by

[left-hand side of Eq(47)]. It also shows how the focusing
effects[right-hand side of Eq(47)] depend on the duration _ _ _ 2_ 2

of the refractory periodv which was just assumed to be big ['=Re(o) = Re(h(k])) = 2m(Dy + Do)k" = 2D,
enough in Ref[22]. With the density dependence aiN) (53
given by Eq.(4) the term in the square brackets in E4j7) is . ,

maximum atN=N,, and is proportional to the cooperativity Wherex(k,!) is defined by

of the signalingg. This agrees with the numerical results of
Ref. [22].

If the refractory perioda is sufficiently small, Fig. 6
shows that the interval o€ corresponding to growth dk
=1 waves only is also small. Simulation of the full set of with §f given by Eq.(52). Substituting Eq(52) into Eq.(54)
equationg1)—(4) shows that, at sufficiently strong signaling, givesA:
the right wavelength is selected even when the refractory
period is very small(a~ w/20). Therefore, the weak- ) J ke sin(L )
signaling approximation developed in this paper cannot de- A =21 (N)N(= 1)1 €“sinK(7 = a)] Lo
scribe a wavelength selection mechanism. This becomes

M) 3F == Z[5(50) + 4(oV)), (54)

even more evident as we investigate stability analysis of Eq. L B sin(K)
(36) without any assumptions on the wave speed. +erisinL(m-a)] Ko |’ (59
V. STABILITY ANALYSIS OF THE WAVE SOLUTIONS where
The reversal-point density PDE has a homogeneous solu- K = -k L= I+k (56)
tion f=N/, whereN is a positive constant that represents a 2 2
common value of local densitidd, and N_ [see Eqs(11)
and(12)]. For this homogeneous solution the advection ve-Using the result in Eq(53) we obtain
locities in Eqgs.(23) and(24) are given by
s N , _,sin(L)
U=0, V=Vy=-2(m-a)QN). (49) I'=20"(N)N(-1) {sm(Ka)sw{K(Tr a)] L
. . . . . . . sin(Kr)
The linearized equation faff =f-N/x is +sin(La)sinL(7 - )] " - 27m(D; + D,)K?
au
- 27D,l2. (57)

16 +Vod 81 + ~[4,(8U) + (V)]
N Note that, in the limit —k, Eq. (57) reduces to the growth
=2m(D1 + D) dyx0f + 2Ky OF . (490 rate of waves with speed near 1, E45). We show that the
resulting linear instability analysis does not provide a mecha-
Here, 8U and 6V are linearized perturbations & andV  nism for wave speed and wave number selection.
induced by the perturbatioff of f. From Eqs(23) and(24) For simplicity consider the lowest-frequency moldel
we obtain and suppose thdd;=D,. Equation(57) reduces to
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1.5

0 /2 T

FIG. 7. (a) Growth rate Eq(58) as a function of wave number.
Parameter valueS=0.3 anda=1/4 are used. This point is denoted
by an asterisk in Fig. 6(b) Neutral stability curves for different
wave numbers.

= 29’(N)N{sir{(1 k) a/2]sin (1 —K) (7 — @)/2]

sin (1 +k) /2]

(1+K 2 +sin (1 +k)a/2]

Xsin{ (1 +K) (7 - a)/Z]W _ %Ckz_ %}
(58)

where C is defined as in Eq(46). Figure {a) shows the
growth ratel” as a function of wave numbé for specific
values parameter€ and « so that(C, «) lies in the region
corresponding to growth of=1 waves only(this point is
denoted by an asterisk in Fig).@Note that the waves with
wavelength5) correspond t&=1 and do not have the maxi-
mum growth rate. Figure(d) shows neutral stability curves
computed from Eq57) for different values ok. As one can
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FIG. 8. (a) Space-time surface plot of the total dendity+N_
computed from solution of the full system Eq4)—<4). (b) Space-
time surface plot of the reversal point density. Parameters in dimen-
sionless unit{Eq. (6)] are w;=1.2, D,=D,=0.01, @=7/10, and
q=4.

the framework developed in this paper still allows us to see a
focusing mechanism of the developed pattern that counter-
acts diffusive spreading.

At sufficiently strong signalindw, = wg in Eg. (4)], Eqgs.
(1)—«(4) with periodic boundary conditions always asymptote
to “colliding-wave” solutions: The space-time behavior of
the total densityN, +N_) superficially resembles a superpo-
sition of counterpropagating waves with speed Elly. &a)].

This pattern is often observed experimentally as a time lapse
movie of consecutive phase contrast imaffe$15 and ex-
perimentalists refer to “waves passing through each other
without interference.” That clearly distinguished these waves
from developmental waves in other microorganisms such as
Dictyostelium discoideunwhich are known to annihilate

see, the growth region for each wave number would includé!Pon collisions[5,6]. Figure &a) shows a space-time plot of
the growth regions of all larger wave numbers as a subset. Tg'€ total density solution. High-density bands filted 45° and
conclude, the results of this section show that the linear stal35° from thex axis are right- and left-going crests, respec-
bility analysis of the weak-signaling model does not providetively: Figure &b) shows the corresponding space-time den-
a wave-speed and wavelength selection mechanism. This rélty of LR reversal points obtained from a full solution of
?f)lt_(iz)corroborated by numerical solutions of the full system fLa(x,t) = n(x, = 0"1). (59)
This equality follows from the fact that cells with the phases
0< ¢<dt at timet reversed during time intervdk—dt,t)
[see Fig. 8a)].

Comparing Figs. @) and §b) we conclude that most of

Numerical solutions of the full system, Eq4)—(4), start-  the cells reverse during crest collisions. That means that the
ing from an initially random perturbation of homogeneouscolliding-wave solutions of Eqs(1)—«(4) are not a simple
solution do not asymptote to periodic waves unless the sigsuperposition of two traveling waves with speeds *1 in
naling is sufficiently strongdata not shown We show that  which the reversal-point distribution is proportional to den-

VI. COLLIDING WAVES

A. Reversal-point density representation of a full solution

041911-8



DEVELOPMENTAL WAVES IN MYXOBACTERIA: A ... PHYSICAL REVIEW E 70, 041911(2004)

2n

0 % 2n *

FIG. 10. Reversal-point density and convective velocity field for
colliding waves. Parameters are as /4, D,=D,=0.05, andq
=4,

cusing to produce the final amplitude waves. The formalism
developed in Sec. lll makes these qualitative arguments
quantitative.

In the weak-signaling limit the colliding waves in Fig. 8
correspond to a solution of E¢36) with a period near 2 in
both x andt directions. Imposing these periodic boundary
conditions we show that colliding waves are a stable solution
of Eq.(36) but have a limited domain of attraction. Figure 10
shows a density plot of the the steady-state solution. The
X inset shows a contour plot of the density as well as the con-
vective vector field(U,V). As one can see from Eq24),
V<0, and, therefore, there is a permanent downward drift of
reversal points in time. This drift is nonuniform; cells drift
sity of the cresf{see Eq(13)]. Instead LR reversal points are downward faster in the upper part of the density peak of the
concentrated at crest intersections. The same observatiQgyersal than in the lower part. Therefore, the convective
would apply if we plot the space-time density of RL reversalye|ocity V focuses the peak along the time coordinate. The
points fr(x,t) =n(x,¢=7",1). These plots show that the spatial componerit) of the convective velocity changes sign
traveling wavegeflect from one another on each collision; from positive in the left part of the peak to negative in the
i.e., right- and left-going crests exchange most cells. A fewight part of the peak. It is zero along the symmetry axis of
cells are in their refractory period during collision and do notthe peak. Thus, the velocity results in no net drift in the
reverse immediately. This accounts for the light bands in Figspatial direction, but still produces focusing that counteracts
8(b). inevitable diffusion. Since the spatial diffusion coefficient in
Eqg. (36) is always larger than the time diffusion, the peak
spreads more in the spatial direction.

FIG. 9. lterative focusing of colliding waves.

B. Focusing mechanism

The mechanism of focusing in “colliding waves” is easy
to visualize by following the distribution of the reversal
points (Fig. 9). Light gray bands in Fig. 9 represent dense Pattern formation in microorganisms has been extensively
crests[compare with Fig. @&)]; for simplicity, only parts of  studied, both experimentally and mathematically. A few no-
these bands are shown. Bands tilted to the right and leftable examples include periodic patterns in colonie®af-
represent concentrations of right- and left-moving bacteriateus mirabilis [24,25, Salmonella typhimuriuni26], Es-
Dark gray rectangles represent the support of reversal pointsherichia coli[27], Bacillus subtilis[28], and Dictyostelium
Trajectories of four sample cells are shown. As cells glide tadiscoideum[3-5]. Formation of these patterns depends on
the right they leave the concentration of left-moving cellsdiffusion-mediated chemotaxis and/or growth and death of
while still refractory. The cells eventually reach the next con-the cells. These patterns are quite different from the rippling
centration of left-moving bacteria. Since they are now sensiin myxobacteria that originates because of the synchroniza-
tive, their phase clocks are accelerated. Cells in the front pation of internal clocks that control the spatial motion of in-
of the crest(1 and 3 hit the the concentration of left-going dividual cells. The synchronization is achieved by contact-
cells before cells in the back of the crg&t and 4. As a  mediated signaling during end-to-end cell collisions. The
result they suffer more collisions so that their phase clockexistence of the refractory period is crucial for the synchro-
are accelerated more and they reverse sooner. Thus the mzation: this is the main prediction of the model. Although
gion of support of reversal points gets focused in X¥e refractory periods have been shown to be generic in eukary-
direction. In the same fashion cells 1 and 3 will hit the nextotic systems, this is the first demonstration of a refractory
concentration of right-moving cells before cells 2 and 4 andperiod in a bacterial systef2]. The analysis performed in
reverse sooner. This results in a focusing of the region in théhis work reveals the synchronization and pattern formation
x-t direction. Diffusional spreading would counteract the fo-mechanism.

VIl. SUMMARY
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The focusing mechanism of the waves is clearly visiblebased on the asymptotic expansion of the density function
by tracking reversal points of cells in space-time. In then(x, ¢,t). In the small-signaling and -diffusion limitwith
weak-signaling limit we derive an evolution equation tracingsignaling and diffusion both proportional toas in Eqs(18)
the distribution of reversal pointSec. Ill). Linear stability —and (32)], we seek an asymptotic expansion of the density
analysis determines parameters favorable for the develogunction
ment of the waves with a given speggkc. IV), but does not
reveal the wavelength ar?d wavg number selection mecha- X ¢te) ~ X, tu7) +en(X, ptn) + - (AL)
nisms(Sec. ). Numerical simulations of the equations show Here 7 represents the “slow time”
that there are stable wave solutions corresponding to the ex- _
perimentally observed ripple€Sec. V). However, in the T=¢e (A2)
weak-signaling limit the basin of attraction of these patternsand terman(x, ¢,t,7) of the perturbation series arereri-
is small; i.e., these patterns do not develop starting fronpdic in ¢ andt. The rational behind EqAL) is that for e
random perturbation of homogeneous initial deB&c. V). =0 (no signaling and no diffusionthe general solution for
In fact, the numerical simulation of the full system, Eqgs.n(x,¢,t) is exactly 27 periodic in ¢ andt. The effect of
(1)—~(4), shows that both strong signaling and nonlinear densmall signaling and diffusiof0< e<1) is to slowly change
sity dependence are essential for the wave number selectief} “modulate” the arbitrary functior(x,t) which appears in
mechanism. Thus, any linear stability analysis is not capablgq_ (9) over a characteristic time that @(1/e). In fact, the

of predicting the correct wavelength. Therefore, the a”alySi?eading-order ternmy(x, é,t,7) in Eq. (A1) has the form9)
of the wave speed and wavelength selection mechanism fQrin 2 additional gep,en,d;ance upon the “slow time”

the myxobacteria density waves remains an open question.
fx=o,t—,7), 0< p<m,

fx+p-2mt—,7), T<P<2m.

The work on myxobacteria has been carried out in col- (A3)
laboration with the Dale Kaiser lafStanford University.
The authors are grateful to Alex Mogilner for valuable dis- The actual dependence bfupon r is yet to be determined.
cussions. G.O. was supported by NIH Grant No. GM59875The essential idea is to formulate an evolution equafion
01A1. O.I. was supported by the Howard Hughes Medicalwith respect to the slow time so that the first-order term
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Institute. N, (X, ¢,t,7) in EqQ. (A1) is 27 periodic int. The 27 period-
. icity of n; in t ensures that the perturbaticam, remains
APPENDIX: ALTERNATIVE DERIVATION OF REVERSAL- O(e) <1 for timet=0(1/e) [which correspond ta=0(1)].

POINT DENSITY EVOLUTION Using the expansiofAl) in Egs.(1) and(2) together with
In Sec. Ill we presented a geometric derivation of Eq.Egs.(6), (18), and(32), it follows that the density perturba-
(36). Here we present an alternative, more formal derivatiortion ny(x, ¢,t, 7) satisfies

= d.Ng+ D1dNg+ Dodysno, in 0< o< a,
B0+ Oy + g = Mo+ D1xNo + D2d g yNo . ¢ (A4)
- (9Tn0 - Q_ad,no + Dlaxxno + D2(9¢¢n0, na< d) <7,
= d.Ng+ D1dNg+ Dod,yNg, Nmr<o¢<m+a,
5tn1_3xn1+5¢n1: 710 190 2Y%pe¢''0 - ¢ (A5)
- &Tno - Q+(9¢,no + Dlaxxno + D20"¢¢n0, nNm+a<< (;b < 2’77,
I
whereQ_=Q(N_.) andQ,=Q(N,). [Ny]ye0= n1|¢:a+ - nl|(,/>=a_ = - 0-Ng| g0 (A7)
Boundary conditions on each of the four boundaries
=0, a, m, and 7+« are required. Notice that, in the absence _ _
g [N]y=r = n1|¢=w+ - n1|¢=w- = Q—no|¢=w (A8)

of diffusion, the solution of Eqq1) and(2) is discontinuous
across these four boundaries if signaling is present, so that
the flux w.n is continuous. Expanding these flux continuity [n1]¢:7r+a = nl|¢:77+a+ - nl|7T+a_ =-Q.ng| g=mra- (A9)
conditions in the limit of small signaling one obtains condi-
tions forng andn,. The zero-order condition requires conti-
nuity of ny and it is satisfied by the solution, EGA3). The
first-order-ine term allows us to compute the jumps of
across the phase boundaries:

For small phase diffusio®,>0, the densityn is actually
continuous across the four phase boundaries but there are
sharp boundary layers of thickne®se) about the boundary
points $=0, «a, 7, and 7+ «. The jumps across these bound-
ary layers are, to leading order & the same as in the case
[N1]g=0 = M g=0* = Ml p=2 = Qg g2, (A6)  of zero phase diffusion.
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FIG. 11. Characteristics of EqgA4) and (A5) projected onto
the x, ¢ plane.

Figure 11 shows characteristics of the left-hand side of

Egs. (A4) and (A5) projected onto thex,¢ plane. The
changeséhg)'("’) of densityn; along each of the segments
(i)~iv) (Fig. 11) are straightforward to compute integrating
the right-hand sides of Eq§A4) and (A5) with use of Eq.
(A3):

oY) = a[ = 3, + Dydye+ Do(d; + 32, (A10)
oy = (7= )= 9, + Dydx+ Dold + 3)?If
+(3+ ) f Q-(x+st+sds,  (ALD)

PHYSICAL REVIEW E 70, 041911(2004)

o) = o[ = 3.+ Dydy+ Do(d,— 3)%lf,  (A12)
éhg\/) = (’77— a’)[_ d.+ Dlaxx+ DZ(O”t - aX)Z]f
2
+ (0 - <“7x)ff Q_(x+st+9)ds. (A13)
Tta

Enforcing 2r periodicity int, one computes the changerip
along the characteristic line shown in Fig. 11 froat to
X,t+27 as
n1|¢=2w - n1|¢=o+ == [n1]¢=o = éhg) + [n1]¢=a + mgi)
+[NJger + O + [Nyl gmra + O
(A14)

Using Egs(A3) and(A6)—«A13) in Eq.(Al4), after cumber-
some but straightforward calculations, one obtains the fol-
lowing equation forf(x,t, 7):

1
978+ S_Lox(Uf) + G(VD]= (D1 + Da)d + Dduf,
T

(A15)

whereU andV are defined by Eqg$20) and(22) or, equiva-
lently, by Eqgs.(23) and(24). This equation is equivalent to
Eq. (36) since r=27T.
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